## ON TIIE ANATOMY AND RELATIONSHIPS OF IVOLUTA MUSICA, Linn. ; WITH NOTES UPON CERTAIN OTHER SUPPOSED MEMBERS OF THE VOLUTID.E.

By S. Pace, F.Z.S., ete.

Read 13th Decenber, 1901.
PLATE II.
A mimodgh the shell of Toluta musica is snch an exceedingly common one in collections, the living animal has not as yet been observed; while only a single example, having the soft parts preserved, appears to have hitherto found its way into the hands of a conchologist. This was obtained by M. Marie at the Île des Saintes, Guadeloupe, and forwarded by him to Dr. P. Fischer, who described (5) and figured the external characters and the radula. The specimen was. however, too badly preserved for Fischer to make out anything further concerning its internal anatomy.

In view of this almost complete ignorance regarding the structure of $V$. musica the late Mr. Martin F. Woodward, who for some time prior to his untimely death had been bestowing particular attention to the morphology of the thachiglossate Prosobranchiata, made great efforts to obtain further material of this species. He was particularly anxious to examine the anatomy of $\Gamma$. musica, because he considered that in all likelihood this species, which must be regarded as the type of Linnæus' genus Voluta, was not at all intimately related to that possibly rather mixed assemblage of forms which are at present grouped together under the Tolutidx. The opportunity to test this surmise by actual dissection did not. however, oceur ; for when at length, through the instrumentality of his friend and former pupil Mr. W. G. Freeman, of the Imperial Agricultural Department Barbados, and Mr. L. B. Brown, of Burbatos, some specimens were obtainerl, these arrived in London at the same time as the news of the sad accident which has deprived malacological science of one of her most devoted and most able stulents.

The Volutes in question were subsequently kindly placed in my hands for examination by the executors of the late Mr. Nartin 1. Woodmard, with the request that I would report upon them to the society of which he had been the Secretary.

Whilst working at the anatomy of Voluta musica, I hare, through the kindness of Mr. E. A. Smith, to whom my best thanks are due, also been enabled to examine the animal of Veptuneopsis Gilchristi, siby., a spirit specimen of this rare molluse having been recently acquired by him for the British Musemn collection. This form had already been investigated by Martin F. Woodward (13), but he had only an imperfect example, the highly important buecal region having
been destroyed by a collector of radule. I also take adrantage of the opportunity to add a few notes ${ }^{1}$ regarting the morphology of certain other supposed members of the Volntoid series.

## Voluta musica, Limn.

The material at my disposal eonsisted of fire examples, all of which were males, of the small pink variety. The shells, which will be deposited in the British Musemm, neasured from $4: 3$ to 5 cm . in length. ${ }^{2}$ The animals were received in their shells. They hat been meserved in formalin, but were not in very good condition for dissection; being much contracted, and in each case the viseeral sae had entirely disappeared, decomposition having apparently set in before the animals were piekled.

Eaternal characters of the Animal.- Is already mentioned, the extemal characters of this Volute have been pretty fully described by Fischer ( $\bar{j}$ ) from a spirit specimen; but the following particulars may be adderl to his account, bearing in mind that my material also was not fresh, but had been preserved in formol.
buring lifn $V$. musica must present an exceeding handsome alp pearance. The dorsal surface of the foot is covered with large pipnont spots, laving the appearance of being contractile chromatophores, upou a sperkled or plashed ground. The sole of the foot is similaly marked, but the markings are of a paler shade. In the preserved state the speckled markings are of a reddish-brown colour, while the larger spots are of a rich purple brown ; but it is of course posisble that the colours of the living animal may be altogether difforent. $A$ - was remarked by Fischer, the introvert presents the very musnal feature of being pigmented like the exterior of the body.

The foot is rombed posteriorly : anterionly it is eleeply notehed, has the angles produced and the front margin duplicated. The operculum is monntel upon a distinct operenlar pad, and placed tramsersely to the long axis of the foot. I could discern mo trace of any pedel pore, lut am not preparel to deny the existence of such a structure. The "pperndarges of the siphon appear to be somewhat variable; and, as remarked by Ficher. they are of very mequal size. 'That on the right side is a sinall tongue-shaped structure lying entirely within the mantle erloe ; while the left one is about as brom as the siphom itself, and, arising abont half-way along the latter, rms parallel with it to its extremity, thas producing the apparance of a cleft siphon. The siphon with its appendages is pigmented, exeppt at its hiuder angle,

[^0]Where it is greatly thickened to form a definite posterior siphon, which shows slight pigmentation and is supported on cartilage. The mantlecllge is thin and mupigmented. In the contracted state, the penis is hatchet-shaped and directed backwards ; it lies entirely under cover of the mantle.

Pallial Complex.-The condition of the organs of the pallial complex presents no unusual features. The bipectinate osphradium is highly developed, and its foliæ are darkly pigmented. 'The laminæ of the ctenidum are triangular in shape and umpigmented. The hypobranchial !land is well developed. Its secretion was at first (as preserved in formol) of a rich purple colour, but this changed to a vivid green under the action of fresh water.

Introcert.-The introvert is of comparatively large size and almost completely eversible. In this condition (Fig. 1) it appears as an elongated structure, which is flattened dorso-ventrally and slightly curred upwards. Attention has already been directed to the pigmentation of the onter surface of the introvert. In the retracted state it lies entirely within the body-cavity, passing to the rioht side orer the cesophagus, and forming a curved lenticular mass which oceupies the greater part of the anterior region of the body-carity and lies transrersely to the long axis of the boty.

The musculature of the introvert is not greatly dereloped; it consists mainly of a series of strands inserted along the greater eurvature of the introvert-sheath.

Alimentary C'anal.-The mouth appears as a conspicuous vertical slit at the extreme end of the everted introvert. It appears to be supported by a couple of small masses of cartilage. The œesophagus, in the everted condition of the introvert, passed straight back, withont any consolution, from the month to the stomach; and it appeared to be of pretty uniform calibre throughout the whole extent of its course. When the introvert is retracted, the œsophaous, after encrging from the introvert, passes sharply forward underneath the latter and to the right side, as far as the nerve collar, where it makes another sudden bend and resumes its backward direction.

Leiblein's Gland. - There is a greatly dereloped œesophageal diverticulum, forming a fery prominent mass lying dorsad to the cesophagus (Fig. 2). It is a rery stont, much conroluted, tubular structure, of large ealibre, larger than that of the œsophagus, arising immediately behind the nerve-ring, and terminating in a but slightly enlarged, thick-walled, spheroidal sac. Its convolutions are bound up in exceedingly tough and elosely adherent connective tissue; and they present a rery characteristic glistening appearance. In colour the terminal segment of the œesophageal cæe日m is pure white and somewhat translucid, while its duct is yellowish and opaque. The enlarged terminal segment is closely bound up with the œesophagus; but its lumen is eertainly not in actual communication with that of the gut at this point.

Salivary Glands. - As probably obtains in the majority of the higher Prosobranchiata, two pairs of so-ealled salivary glands are represented ; and both pairs lie entirely in front of the nerve-eollar.

The racemose glands, which are the homologues of the single pair met with in the loss speciatized forms, present a peculiar •fluffy' appearamee, and in colour are translucont white, while the tubular glands are yellowish and opaque.

The ducts of the racemose glands are at first straight, of fanly lare ealibre, and quite free from the wsophagus, standing out at right angles, one on each side of the latter, at a point just outside where it emerges from the introvert. Aiter meeting the asophagus the salivary ducts are continued forwarl as very dolicate convoluted tubos of diminishing calihre, which run along one on each side of the œsophagus, and are closcly bound up with it.

The tubular glands (Fig. 2) lie entirely within the introvert when the latter is extruferl, but upon its retraction they project freely into the body-cavity. They are convoluted thronghout the major portion of their cousc, but for a short distance from their distal extremities, which are marked ly a slight prriform enlargement, they are guite straight. This short terminal segment is directed forwards: the thbe then bends shamply upon itsclf, and becomes much conmonted, while its calibre undergoes regularly progressive diminution. Upon nearing the radulat-sac, the tubular salivary glands, now extremely fine, pans suddenly under the oxsophagus, and meeting, give off at right angles a single, very delicate duct, which passes forward under the rambla-site.

Radula.-L am not at all certain that the radula of Volute musice is represented with perfect aceuracy by the familiar formula $0-1-0$, since the uncleaned preparation of this organ showed what may possibly be the extremely minnte, shapeless restiges of lateral teeth. The finctional teeth (Fig. 4) are of the 'rastriform' type, so well described and figured by Fischer (5). The number of denticles appears to be inconstant: Fischer's example showrd twelve well-formed cusps, with, on one side, three intermediate denticles.

Serronss System.-The most important point regarding the nervons srstem ( Fig .8 ) is the quite considerable length of the right plemovisceral comective; the supra-intestinal ganglion ocrupying its more nomal position close to the oxphradimm, instead of being intimately related to the nerve-ring, as in the Volutes described by Martin F. Woodward.

Conclusions.-As will be seen, Toluta musica does not differ in its anatomy from those few Volutidar of whose structure any details are at present linown, to such an extent as to justify its separation from the other members of that gromp, the most evident deviation being in the ramba; but eren in this feature there are indications, as will be peinted ont, of the existence of an intermediate type in Lyyra deliciose, and further links maty reasomally lie antiopated to exist among the large mumber of speceses of whose anate my nothing is as yet known.' Horeover, it must he remembered that the taxomomic

[^1]value of the radula in the Prosobranchiata has been considerably overrated ; and that the more important characters are probably those whieh are afforded by the alimentary canal with its appended glands, and by the nerrous system. In the morphology of its alimentary apparatus, $V^{r}$.musica is in complete aceord with what is known in other forms referred to the Volutitre; while, as regards its nerrous system, the presence of a definite right pleuro-risceral comnective is suggestive of a more primitive condition than is met with in any known form other than Helo Neptreni (1, figs. $7 \pm$ and 75).

## Lyria deziciosa, Montrz.

The anatomy of this form was investigated by P. Fischer (4); but, although he would seem to have had ample material, his description is anything but complete.

Leiblein's Gland.-Fiseher makes no mention of the existenee of an œsophageal ereum in Lyria : ean it be that it is absent or insignificunt in this form; or, may it not rather be, that what is described as the stomach is in reality formed by the convoluted Leiblein's gland bound up with the gut?

Salivary Glands -Fischer describes the tubular salivary glands, Which he states open one on each side ${ }^{1}$ of the radula-sac, but he says nothing of the normal acinose ones, which are, presumably, also present.

Radula.-Fischer's figure of the radula is a somerrhat unsatisfactory one, but the enlarged, straight base of the tooth, and the small and equal size of its cusps, are rather suggestive of an approximation to wards the $I^{\prime}$. musica type.

## Neptuxeorsis Gilchristi, Sby.

Mr specimen, like that described by Martin F. Woodward (13), was a female. It was preserved in spirit, had been removed from its shell, ${ }^{2}$ and was minus the risceral sac when I reecived it. Otherwise, notwithstanding the fact that the animal had been macerated for a fortnight in urder to facilitate removal from its shell, the tissues were in fairly grod condition for dissection.

External characters of Animal.-The head is produced into two enormons, expanded, tentacular lobes: these, although Hattened, are stout and solicl, and have their borders rounded; they are separated in the middle line by a deep noteh, which is continued orer the dorsal surface of the head as a shallow merlian groove. It is noteworthy that the head is not quite symmetrical, the right tentacle, and more particularly the eye-stalk, being more developed than the left. The general shape of the had is shown in Fig. 5, in which the position of the rhynchostome, or talse month, is also indieated.

[^2]The foot is bilobed anteriorly, and its front margin is duplicated. It bears a conspicnous pedal pore on the sole at about its midalle. The operenlar pad is large. The siphon is very short, and the edge of the mantle is continued romed its base as a very slight and inconspicuons collar. Martin F. Woolward has stated that the siphon is devoid of appendages: my specimen, howerer, showed a prominent tongue-shaped ontgrowth of the lelt horder of the siphon at its base, and I hatwe since made ont the existence of a similar structure in Woodwarl's specimen, in which its presence hat been obseured by coagulated mucus. The posterior siphou is represented by but a slight groose.

The animal appeared to have been entirely destitute of colourmarkings. The eye-spots are red in the preserved specimen.

Introvert. - The rhynchostome, or external opening of the introvertsheath, is romuled and quite simple. The eversible portion of the introvert is couical in form, somewhat Hatteued dorso-ventrally, and with the base of the cone, not at right angles to its axis, but facing downwards. Its walls are enormonsly thickened and muscular, especially at its base. The musculature of the introvert consists of two lateral series of romded bundles arising on the hody-wall, and inserted at close intervals along the sides of the introvert-sheath (Fis. 6). These bundles become more developed towards the base of the introvert, which is further provided with a powerful retractor, arising on the roof of the body-cavity and inserted dorsally on to the introvert-sheath.

Alimentary Canal.-The mouth is a small vertical slit at the extreme end of the proboscis: it is destitute of jaws and unsupported by cartilage. The buceal mass is well developed, measuring about 9 mm . in length. Its roof is extremely thin aud transparent, and so closely applied to the oesophagus as to give the buccal mass a erescentic 1ransverse section. The initial segment of the osophagns is perfeetly straight, and practically buried up in the musenlar root of the introvert. After passing ont of the introvert the wesophagus beeomes somewhat enlarged and rery thick-walled. In the contracterl condition it passes sharply forward, to the right of the retracted introvert, as far as the nervering. Passing through this, it makes another sharp turn backwards, and appears to be continned without any break as Leiblein's gland ; the esophagus appearing to come off below, immediately hehind the nervering, as a thin-walled, and comparatively insignificant, ontgrowth of what is in reality its own diverticulum. The explanation of this apparent anomaly would seem to be that here, as in perhaps the majority of instances, the point of separation of the arsophageal diverticulmu from the arophagns is not its true point of origin, the latter being sitnated far forwarl in alvance of the nervecollar, namely, at the point of apparent thickening of the osophanse. From here, backwarls, the asophagus is so elosely bound up with its diverticulum as to be indistinguishable from it by ordinary dissection. After the separation off of Leiblein's gland the ossophagus undergoes no further convolution; but its walls soon become so execedingly thin
as to appear quite membranous, and the lumen of the gut is at the same time increased.

Salivary Glands.-Two pairs of so-called salivary glands are present (Fig. 7); the one pair acinose, the other tubular. Both pairs are situated entirely in adrance of the central nerrous system.

The acinose glands occupy a position immediatelr in front of the nerve-ring. Their acini are much mixed up, but they are so exceedingly brittle that I was unable to determine whether there is any actual commumication between the glands of the right and left sides, such as exists in certain Toxoglossa. The racemose glands are in close contact with the wsophagns, and only an extremely short tract of their ducts is free. After becoming applied to the œsophageal wall the salivary ducts become exceedingly delicate, so celicate that I was quite mable to follow them forward to their pharyngeal openings.

The tubular glands are highly developer. That part outside the introvert is of large calibre, and lies perfectly freely within the borlycavity. As is the case in $r^{\prime}$. musica, the tubular glands are sharply bent back npon themselves at a short distance from their distinctly enlarged distal extremities. They are of gradually decreasing calibre, and become very delicate within the introvert. Upon reaching the end of the radula-sac, the glands, now of extreme tenuity, pass under the retractor muscle of the buccal mass, and there unite to form a single convoluted duct of inereased calibre. This convoluted duct forms a broad strap-shaped mass lying beneath the buccal mass, and might rery easily be mistaken for an anterior buccal retractor. It was possible to trace the duct rinht formard as far as the lips; and it appeared to open into the month well in adrance of the buccal mass, but I was not able $t$, make out its actual orifice with certainty; anyhow, unless the chet doubles back again and is excessively delicate, it certainly does not open upon the floor of the buccal mass, as has been described, possibly erroneously, in other forms.

Radula.-'The radula contained 65 roms ; and the most important point which I bave been enabled to make out with regard to this interesting form is the fact that the true formula of the radula (Fig. 8) is 1-1-1, and not $0-1-0$ as described ${ }^{1}$ by Nowerby (11). I had rather anticipated finding some indication of lateral teeth in this form, which in the characters of its shell and operenlum approximates lather towards the fusoid type; and therefore took particular paius in the investigation of this structure, otherwise its true nature woukd most certainly have escaped me. In the fresh state ${ }^{2}$ the lateral

[^3]teeth, thongh quite mmistakably present, were plainly seen to be greatly degenerate, and are probably quite functionless. They were of extreme temity compared with the rery masure rhachidian tooth, and their conton's were ragged. ${ }^{1}$ Under the action of, even cold, caustic potash they were so very speedily disintegrated, that 1 had no time to make a draming of them before they were entirely destroyed.

## Yolutilitues abrseicola, Ad, \& Rre.

I have examined the disseeted specimen described by Martin F. Wroodwarl, and may ald the following to his account (13) of this form.

Erternal characters of Animal.-The tentacles and eye-stalks are quite rounded, amd thus mnlike those of any other Volute hitherto recorded. The foot is sancely at all amiculated; its front margin is duplicated. I conld find ho trace of any pedal pore; and 1 ann confident, so beantifully are the specimens preserved, that 1 should have been able to detect an opening had one been present. The siphon, which is quite dewoil of tentacular appendages, is surrounded by a collar-hike prolongation of the mantle.

## Cimbiola ancllla, Sol.

The following few notes, based upon the material deseribed by Martin F. Woorlwacl, may be added to his deseription (13).

Extermal character's of Aumal. - The front elge of the foot is duplicated. The appendages to the siphon are of very nearly equal length, ancl are quite insiguificant by comparison with the siphon itself.

Leiblein's Gland.-This is much convoluted, and the convolutions are bound up togethor in very tongh connective tissue. The duct terminates in a muscular sac of not much larger calibre than the duct.

Salicary Glamds.-The tulular glands each terminate in a distinct pyriform enlargement.

Radulet-Mr. Martin F. Woodward did not consider it necessary to figure the radula, since it is of the same type as that of the majority of the Volutes whose dentition has been examined. In my opinion, howerer, it is desimable that, wherever possible, the detailed chasacters of this organ should be placed upon record, since these details will probably assme an increased importance in the future. I have therefore made a cancra-lucida drawing (Fig. 9) from Woodward’s preparation. It should be noted that the central cusp bears no dursal groove, but is quite solid and romnded. 'The rulula, as momnted, contans 43 teeth, and it appears to be complete.

Tespertilio vfapertilio, Linn.
Radula-For comparison with the radula of Amoria Tumeri, I have thonght it advisable to figure a portion of the original preparation described by I)r. (iray ( 7 , as that of 5 . respertilio (Fig. 10). The

[^4]grooved condition of the central cusp, not indicated by Gray or Troschel (12), should be noted. As mounted by Dr. Gray the radula consistel of 26 teeth.

## Amoria Turnert, Gray.

Raduldu.-The original preparation figured by Dr. Gray (6; p. 133, fig. 5) as the radula of this species shows, as I had surmised, that his figure does not well interpret the structure of the tooth. I have therefore refigured it (Fig. 11). It will be secn that there is, after all, nothing so very peeuliar about the radula of $A$. Turneri; and that it differs from that of $V$. vespertilio only in having the base of the tooth even more arched than it is in the latter form, and in the complete suppression of its lateral cusps with accompanying greater derelopment of the central cusp.

## Volutomitra Greenlandica, Beck.

Raduld.-Martin F. Woodward (13) and others have assumed that the figure given by Troschel (12; pl. v, fig. 5b) represented a normal, triserial radula. This figure, however, in reality demonstrates the effect of pressure upon the cover-glass; for the apparent lateral teeth are in reality but the broken-off bases of the highly arehed rhachidian tooth, which appears to be alone present. This tooth would seem to be in every respect comparable with that of Amoria Turneri. ${ }^{1}$

## Halia Pramus, Meusch.

There now seems to be no reasonable doubt as to the correctuess of the reference of this form to the Volutidæ. The published accounts of its auatomy are, however, obvionsly based upon misconceptions as to the homologies of the parts; and these inaccuracies have unfortunately received the imprimatur of the text-books.

Alimentary Cunal and Leiblein's Gland.-Fischer (3) regarded the convolutions of the œesophageal crecum as being those of the intestine; and both he and Poirier (8) have mistaken for the stomach what is without doubt ouly the enlarged terminal segment of this diverticulum. The true stomach is figured by Poirier (8; pl. ii, fig. 4) occupying its normal position, and with the usnal relationships ; but it is regarded by him merely as a bend of the intestine. The condition of Leiblein's gland in this form is generally regarded as quite a peculiar one, Poirier having described it as being in open communication with the lumen of the alimentary canal, at its enlarged distal end as well as proximally. Now, is it not in the highest degree probable that the actual facts of the case are, that the terminal enlargement of the cesophageal cæcum is so closely bound up with the œesophagus, that in the process of dissection an apparent sccond opening into the gut has been artificially formed at this point? It is an exceedingly easy matter to fall into error regarding the openings of minute ducts; thus, I was myself very nearly

[^5]recorting such a second commmication between the esophagns and its cecum in $V$. musica. The only really conclusive methorl of determining points such as the one in 'puestion is by sexial-sectioning.'

Radula.-The radula appears to be in every respect similar to that of Amoria Fischer ( 3 ) modonbtedly examined this organ from its lowersurface, and arived at quite an erroneons conchesion as to its true mature, since he describes it as of the formula $1-()=1$, and as having a deep median furow. Poirier ( 8 ) gave the formula as $1-1-1$; but the supposed laterals, like those of Volutomitra, are almost certainly only the broken-off ends of the highly arched base of the rhachidian tooth.

> Merzgeria albus (Jeffr.) [ = Meyerio pusilla, Sars].

May not this form, which by Sars (9) was referver to the Mmicidx, be more closely related to the Volutida? The shell has columella plaits which are quite as strongly developed as they are in some admitted Volutes; and the obviously inexact figure given hy Sars of the alimentary camal is somewhat reminiscent of the Volntoid type, while the radula does not appear to be so very unlike that of Psephea or Volutilithes.

## REFERENCES.

1. Bonvier, E. L.: Système nervenx, morphologie générale, et classification des Gastéroporles l'rosobranches: Ann. Sci. Nat., Zool., sér. vn, tom. iii (1887).
2. Bouvier, E. L.: Sur le Niphon osophagien des Marginelles: Bull. Soc. P’hilom., sér. vir, tom. i (1889), pp, 13-14.
3. F'ischer, $P$ : : Monographic du genre Malia, Risso (Priamus, Beek) : Jomm. de Conch., tom, vii (1858), pp. 141-158, pl. v.
4. Fischer, P. : Sur l'anatomie des Lyrial Journ. de C'onch., tom, xr (1867), pp. 349-356, pl. xiii.
5. Fischer, l': Sur l'Animal du Voluta musien, Linn.: Jomm. de Concl., tom. xxvii (1879), pp. 97-106, pl. v.
6. Giay, J. E.: On the division of C'enobranclams Gasteropodous Mollusea into larger groups and families: Am, \& Mag. Nat. Hist., ser. nf, vol. xi ( 1853 ), pp. 124-183.
7. Gray, J. E.: On the Teeth of the geums Mitra, Lamarek: Ann. \&Mag. Nat. Hist., ser. 11, vol. xii (1853), lp. 129-180.
8. Poirier, J. : Recherches anatomiques sur l'Mutia Priamus (Risso): Bull. Soc. Malac. France, tom. ii (1885), plr. 17-50, pls. ii-iv.
9. Sar's, A. : Mollnsea Regionis Aretice Norvegix: (hristiania, 1878.
10. Sehacko, G.: Radula Untersuchangen: Conch. Mitth., Bd. i (1881), pp. 122-128, pl. xxiv.
[^6]
[^0]:    1 For the opportunity to examine such of the late Mr. Martin F. Woodward's dizections as are preserved in the Zoolowical Laboratory of the Foyal College of S'dence, my thanks are due to Jor. (r. 13. Jlowes; and I an indebted to Mr. Vi. A. Simith for permission to work though Dr. Gray's original preparations of radula which are now in the british Musem.
    2 It is very probable that this diminutive size of certain specimens of $J^{r}$. mesice is a sevalal chanacter. Fischer ( $t$ has recorded that the male of Inyta delimioser has a smalloy shall than has the fimale; aml this type of sexuaj dimorphism Would appear tole not at all uncommon among Prosobranchs.

[^1]:    1 Since this papro was written I have heen enabled to examine the radula of Iyria fund us, lam. : this exhibis a most pertect intermediate stage between the 1. mensice athed the Lymed deleciose types.

[^2]:    ${ }^{1}$ It is probable that the tubular' salivary glands' in all cases open in advance of the radula-sac, ant not at its posterior extremity.
    2 The resister number of the shell, which is in the British Mnsenm, is "1901: $10 \cdot 29 \cdot 10 .{ }^{\prime \prime}$

[^3]:    1 Sowerby's figure shows such discrepancies from my preparation, that I venture to question whother the radula of some other species, e.g. Cymbiola ancillu, may not have been accidentaly substituted for that of $N_{\text {Peptrmeopsis by the mounter }}$ of Sowerby's slide.
    2 A radula should in all cases be examined before cleaning with potash, since restigial teeth such as those in question may be much too tender to withstand the action of this reagent. It is not sufficiently realized that potash is not without effeet upon chitinons material; but that, on the contrary, delicate structures may be entirely destroyed by its use.

[^4]:    1 It is noteworthy that digenerate hateral tecth have been recorded by schacko (10)
    

    Devievetita Aluitic martens

[^5]:    ${ }^{1}$ I had hoped to refigure the radula from Dr. Gray's preparation, but an examination of the slide, a temporary mount, shows that the radula itself has unfortunately disappeared.

[^6]:    ${ }^{1}$ It mar be moted that Bouvier (2) has recorded that in Marginella congulata the arsophageal ciecum commumicates with the ossophagus he two openings situated in elnse proximity to each other; and he regards the divertichlum as being in this case of a similar nature to that stated to exist in Hulu, only that in Marginalla the supposed loop has become obliterated by the fusion of its immer taces.

